(AG) Date of Patent: Aug. 31, 2010

(54) ANTISENSE AGENTS COMBINING STRONGLY BOUND BASE-MODIFIED Oligonucleotide AND ARTIFICIAL NUCLEASE

(57) Invention: Antisense agents combining strongly bound base-modified oligonucleotide and artificial nuclease.

(57) PRIOR ART CITED

(57) REFERENCES CITED

(57) ABSTRACT

The present invention provides compounds having a chelating moiety and an oligonucleotide sequence wherein the oligonucleotide includes one or more modified nucleobases, such as hydroxynucleobases. The disclosed compounds are suitable for antisense therapy. The chelating moiety can be complexed to an ion of a lanthanide metal. These compounds are efficient translation inhibitors of nucleic acids and have increased binding affinity for target nucleic acids. The invention also includes compositions and methods of using these compositions as antisense therapy.
GenBank accession No. NM_016848, Homo sapiens SHC (Src homology 2 domain containing) transforming protein 3 (SHC3), mRNA; Jul. 1, 2007.
GenBank accession No. NM_017956, Homo sapiens tRNA methyltransferase 12 homolog (S. cerevisiae) (TRMT12), mRNA; Aug. 6, 2007.
GenBank accession No. NM_021724, Homo sapiens nuclear receptor subfamily 1 group D, member 1 (NR1D1), mRNA; Jun. 27, 2007.
GenBank accession No. NM_176795, Homo sapiens v-Harvas Harvey rat sarcoma viral oncogene homolog (HRAS), transcript variant 3, mRNA; Aug. 12, 2007.
GenBank accession No. NM_181505, Homo sapiens protein phosphatase 1, regulatory (inhibitor) subunit 1B (dopamine and cAMP regulated phosphoprotein, DARPP-32) (PPP1R1B), transcript variant 2, mRNA; Jul. 30, 2007.
* cited by examiner
Stability of oligonucleotides at 37 centigrades in the serum

FIGURE 1

oligo 1*

FIGURE 2
1 ANTISENSE AGENTS COMBINING STRONGLY BOUND BASE-MODIFIED Oligonucleotide AND ARTIFICIAL NUCLEASE
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/797,448, filed May 3, 2006, which is incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention is in the field of oligonucleotide analogs that contain specifically modified RNA or DNA bases and are bound to organic complexes of lanthanides with highly selective artificial nuclease activity.

BACKGROUND OF THE INVENTION

In addition to specific binding affinity to a complementary target nucleotide sequence, antisense oligonucleotides should fulfill the requirements for therapeutic purposes, including potency, bioavailability, low toxicity, and low cost. Since oligonucleotides having a natural phosphodiester backbone are labile to nucleases and do not readily penetrate the cell membrane, researchers have attempted to make polynucleotide backbone modifications that improve nuclease resistance and cellular uptake. Therefore, it is desirable to provide polynucleotide analogs with enhanced nuclease resistance and cellular uptake, while retaining their specific interaction with nucleic acids and/or their catalytic activity.

An interesting approach to decrease the nuclease viability of oligonucleotides is via modification by inclusion of zwitterionic base forms, which electrostatically protects the phosphodiester bond (Switzer, “Antisense oligonucleotides comprising 5-aminoalkyl pyrimidine nucleosides” U.S. Pat. No. 5,596,091, Jan. 21, 1997; Switzer, “Antisense oligonucleotide containing compositions and method of forming duplexes” U.S. Pat. No. 6,031,086, Feb. 29, 2000).

One potential means of providing synthetic RNA trans-terification catalysts may be via the creation of more potent antisense oligonucleotides through the attachment of a cata-

SUMMARY OF THE INVENTION

The present invention relates to compounds having oligonucleotides wherein the oligonucleotides comprise modified nucleobases and/or chelating moieties, which increase their binding ability to complementary nucleic acids and can impart phosphodiesterase activity. Depending on the nature of the number of modified nucleobases in the oligonucleotide portion of the disclosed compounds, the binding ability of the compound to a complementary target nucleic acid can be increased up to 10^18-10^19 times, compared to a typical complementary oligonucleotide. Such increases in binding can allow for lower concentrations of the agents to be employed for industrial, prophylactic, therapeutic, or other purposes. Additionally or alternatively, the catalytic activity of the compounds of the present invention modified with a chelating group capable of complexing to a metal ion can allow for lower effective concentrations of the compounds (as compared to prior antisense therapy compounds), as the compound can complex to a complementary strand, catalyze phosphodiester bond cleavage, and repeat with another complementary strand.

The materials of the invention are useful for all variety of procedures for which antisense nucleic acids are employed or might be employed in the future, including, but not limited to, diagnosis, therapy, and modulation of gene expression of a host or a pathogen.

In view of the exquisite binding power, the materials of the invention are also useful as detection probes for detecting and/or quantifying target nucleic acids.

Therefore, one aspect of the invention is compounds having a chelating moiety and an oligonucleotide of about 5 to about 150 nucleobases, wherein the oligonucleotide further comprises at least one modified nucleobase, such as a zwitserionic tautomer, ionic tautomer, mercaptonucleobases, or hydroxynucleobase. In a preferred embodiment, the oligonucleotide has about 10 to about 100 nucleobases, more preferred, about 10 to about 50 nucleobases, and most preferred, about 20 to about 30 nucleobases. In some cases, the oligonucleotide has at least 2 modified nucleobases. In preferred embodiments, the modified nucleobases are mercaptonucleobases and/or hydroxynucleobases. In certain embodiments, the hydroxynucleobases are from about 10% to about 20% of the total number of nucleobases in the compound. In preferred embodiments, the hydroxynucleobase is 5-hydroxycytosine, 5-hydroxyuracil, 8-hydroxyadenine or 8-hydroxyguanine and/or the mercaptonucleobase is 5-mercaptopurine, 5-mercaptopurin, 8-mercaptopurine, or 8-mercaptopurine.

As used herein, a chelating moiety is a moiety of a compound that is capable of complexing to an ion of a metal. In preferred embodiments, the metal is a lanthanide, and in more preferred embodiments, the metal is selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Particularly preferred metals are europium and lanthanum. Preferred chelating moieties are ones having a formula selected from:

![Chemical Structure](attachment:chemical_structure.png)
where R is the oligonucleotide portion of the compound. R¹ and R² can be hydrogen, C₁₋₅ alkane, C₂₋₅ alkene, C₂₋₅ alkyne, acylC₁₋₅ alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₅ alkylaryl, or C₁₋₅ alklyheteroaryl. R² can be C₁₋₅ alkyl, C₂₋₅ alkene, C₂₋₅ alkyne, aryl, heteroaryl, C₁₋₅ alkylaryl, C₁₋₅ alklyheteroaryl, or acylC₁₋₅ alkane. In one specific embodiment, the chelating moiety is:

R¹

R²

[Chemical structure]

where R¹ are each 2,2,2-trifluoroacetyl, and R is the oligonucleotide.

An other aspect of the invention is a composition comprising a compound as disclosed herein and a pharmaceutically acceptable carrier. In some embodiments, the composition further comprises a delivery vehicle, such as a liposome.

Yet another aspect of the invention is a method of inhibiting translation of a target nucleic acid with a compound as described herein. For instance, such a method comprises contacting the target nucleic acid with a compound of the present invention under conditions which permit hybridization of the compound to the target nucleic acid, wherein the hybridized compound inhibits translation of the target nucleic acid. In some cases, the compound cleaves a bond of the target nucleic acid. In certain embodiments, the target nucleic acid is mRNA. In some embodiments, the target nucleic acid is in an organism and the contacting comprises administering to the organism a composition comprising the compound of the present invention and a pharmaceutically acceptable carrier. Alternatively, in other embodiments, the contacting comprises mixing the compound of the present invention with a biological sample from the organism which comprises the target nucleic acid. In some cases, the organism is a human or animal subject. In a specific embodiment, the human or animal subject suffers from a viral infection, bacterial infection, microbial infection, fungal infection, or cancer.

Still another aspect of the invention is a method of inhibiting translation of a nucleic acid in an organism, comprising predicting or determining a nucleic acid sequence of a target nucleic acid in the organism, and administering to the organism a composition comprising a compound of the present invention and a pharmaceutically acceptable carrier. In some cases, the composition further comprises a delivery vehicle, such as a liposome. The compound administered in the composition comprises a nucleotide sequence that is sufficiently complementary to the nucleotide sequence of the target nucleic acid to hybridize thereto in the organism under conditions sufficient to permit such hybridization, thereby inhibiting translation of the nucleic acid in the organism. In some cases, the nucleotide sequence of the compound is fully complementary to all or a portion of the sequence of the target nucleic acid.

Yet another aspect of the present invention is a method of making a compound to inhibit translation of a target nucleic acid under conditions sufficient to permit hybridization, comprising (a) determining a nucleotide sequence of a target nucleic acid; (b) synthesizing a compound that comprises a chelating moiety attached to an oligonucleotide comprising an oligonucleotide sequence that is complementary to at least part of the nucleotide sequence of the target nucleic acid and from 5 to 150 nucleobases wherein at least one nucleobase is a hydroxynucleobase selected from 5-hydroxycytosine, 5-hydroxyuracil, 8-hydroxyadenine and 8-hydroxyguanine; and (c) mixing the compound with a ion of a metal selected from lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. In some embodiments, the chelating moiety has a formula:

[Chemical structure]
wherein R is the oligonucleotide portion of the compound, R¹ and R² can be hydrogen, C₁₋₈ alkane, C₂₋₈ alkene, C₃₋₈ alkyne, acylC₁₋₈ alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₈ alkyaryl, or C₁₋₈ alkyl/heteroaryl. R³ can be C₁₋₈ alkyl, C₂₋₈ alkene, C₃₋₈ alkyne, aryl, heteroaryl, C₁₋₈ alkyaryl, C₂₋₈ alkyl/heteroaryl, or acylC₁₋₈ alkane. In a specific embodiment, the conditions sufficient to permit hybridization are human physiological conditions.

In addition to the foregoing, the invention includes, as an additional aspect, all embodiments of the invention narrower in scope in any way than the variations specifically mentioned above. For example, although aspects of the invention may have been described by reference to a genus or a range of values for brevity, it should be understood that each member of the genus and each value or sub-range within the range is intended as an aspect of the invention. Likewise, various aspects and features of the invention can be combined, creating additional aspects which are intended to be within the scope of the invention. Although the applicant(s) invented the full scope of the claims appended hereto, the claims appended hereto are not intended to encompass within their scope the prior art work of others. Therefore, in the event that statutory prior art within the scope of a claim is brought to the attention of the applicants by a Patent Office or other entity or individual, the applicant(s) reserve the right to exercise amendment rights under applicable patent laws to redefine the subject matter of such a claim to specifically exclude such statutory prior art or obvious variations of statutory prior art from the scope of such a claim. Variations of the invention defined by such amended claims also are intended as aspects of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graph depicting stability in serum at 37°C of oligonucleotides having 0, 1, 2, or 3 hydroxy-guanine nucleic acids incorporated.

FIG. 2 is a graph depicting the amount of DNA remaining after incubation with a variety of complementary oligonucleotides.

FIG. 3 is a photograph of analytical gels showing degradation of eGFP in the presence of lanthanide-oligonucleotide complexes as disclosed herein. The upper gel shows the results of incubation of unmodified oligonucleotides complexed to lanthanides with miRNA and the lower gel shows the results of the incubation of miRNA with modified oligonucleotides complexed to lanthanides. Lane 1 is the molecular weight size markers; lanes 2 and 3 show degradation in the
presence of 10 μM oligonucleotide-lanthamide complexes; lanes 3 and 4 show degradation in the presence of 5 μM oligonucleotide-lanthamide complexes; lane 6 is a control experiment of the sense RNA; and lane 7 is a control experiment of the antisense RNA.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The current invention provides novel compounds comprises a chelating moiety and an oligonucleotide having properties for use in antisense, diagnostic, and other methods employing oligonucleotides. The compounds of the invention include antisense oligonucleotides having (a) one or more modified nucleobases having high binding efficiency to natural nucleobases and (b) one or more chelating moieties. These compounds can hydrolyze phosphodiester bonds of oligonucleotides, RNA, and/or DNA, and are useful in antisense therapies.

In the context of this invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics, chimeras, analogs and homologs thereof. This term includes oligonucleotides composed of naturally occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally occurring portions which function in a similar manner as naturally occurring oligonucleotides when, e.g., hybridizing to target nucleic acids or interacting with complementary oligonucleotides. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for a target nucleic acid and increased stability in the presence of nucleases.

The efficiency of binding of compounds of the present invention to biological counterparts (e.g., oligonucleotide, RNA, or DNA) is attained via incorporation of modified nucleobases or other analogs having zwitterionic or ionic tautomers. Compounds of the present invention have at least one nucleobase having modified nucleobases or other analogs having zwitterionic or ionic tautomers. In preferred embodiments, the modified nucleobase is a hydroxynucleobase selected from 5-hydroxycytosine, 5-hydroxouracil, 8-hydroxyadenine and 8-hydroxyguanine or a mercaptonucleobase selected from 5-mercaptopycytosine, 5-mercaptopuracil, 8-mercaptopurinucine, and 8-mercaptopuradencine.

In one embodiment, an oligonucleotide comprises one or more tautomeric forms of the 5-hydroxyuracil anion (1) having the formulae (Scheme 1):

![Scheme 1](image)

Because of the substantial negative charge on the C4 carbonyl (closeness to the oxy-anion) of the 1-methyl-5-hydroxyuracil anion 1b, this pair will be substantially more strongly bonded than the native guanine-ctosine pair. The calculations reveal that the reverse Watson-Crick pair between guanine and 1-methyl-5-hydroxyuracil anion is by 2 to 4 kcal/mol more stable than the normal guanine-ctosine pair.

In another embodiment, the compounds of the present invention include the hydroxybase 5-hydroxycytosine (2). The tautomeric forms of the 5-hydroxycytosine (2) anion are given on Scheme 3, where R denotes again the rest of the compound.
In the case of the 1-methyl-5-hydroxycytosine anion, the structure 2b is the most stable tautomeric form in the solution. This N—H form of the anion has substantial negative charge on the C2 carbonyl oxygen atom. As a result, the respective pair with the guanine (Scheme 4) is significantly more strongly bonded than the normal guanine-cytosine pair.

The AM1 SCRF calculations predict that the abnormal guanine—tautomer 2b pair is by 5.42 kcal/mol more stable than the normal guanine—cytosine Watson-Crick pair. The respective calculated difference using PM3 parameterization is even larger, roughly 10.21 kcal/mol. Consequently, such strong bonding may substantially affect the normal DNA replication process and lead to the mutations or even cell termination. This is in accordance with the experimental observation of 5-hydroxycytosine, similarly to 5-hydroxyuracil being an extremely strong mutagenic agent (Wallace, "Biological consequences of free radical-damaged DNA bases," *Free Radical Biology and Medicine*, 2002, 33:1-14).

However, within the present embodiment, the very low concentration of this component guarantees only the strong bonding of specific title compounds, with negligible non-specific bonding to random complementary bases in biological counterparts (DNA, RNA).

In another embodiment of the present invention, the hydroxybase is a tautomeric form of the 8-hydroxyadenine and its anion (5). The respective tautomeric forms of this anion are given in Scheme 5, where R denotes again the rest of the compound.

In the case of anion of 9-methyl-8-hydroxyadenine, the most stable tautomeric form is the ionized 8-hydroxyl form 3a. In this case, the normal bonding with uracil is only slightly affected. However, the calculations indicate that the most stable tautomer in the solution of the neutral 9-methyl-8-hydroxyadenine is the zwitterionic form 4, presented on Scheme 6.

Because of the positive ionic charge on the ammonium group this tautomer forms very strong hydrogen bonds with uracil. The 9-methyl-8-hydroxyadenine zwitterionic tautomer 4 pair with uracil was calculated to be by 5.16 kcal/mol (AM1 M06 SCRF) to 8.41 kcal/mol (PM3 M06 SCRF) more stable than the normal adenine-uracil pair (cf. Scheme 7).
This is again in accordance with the very high mutagenic activity of the 8-hydroxyadenine (Wallace. “Biological consequences of free radical-damaged DNA bases,” Free Radical Biology and Medicine, 2002, 33:1-14). However, the expected increased bonding allows to decrease the concentration of compounds of the present invention by up to 5 orders of magnitude in comparison to compounds having natural nucleobases only.

Another embodiment of the invention provides compounds of the present invention modified by tautomeric forms of the 8-hydroxyguanine and its anion (5). The respective tautomeric forms of this anion are given in Scheme 8, where R denotes again the rest of the compound.

As used herein, each of the hydroxynucleobases is considered complementary to a nucleobase when it stably hydrogen bonds to the opposite nucleobase. Therefore, in some cases, 5-hydroxycytosine is complementary to adenine, 5-hydroxycytosine is complementary to guanine, 8-hydroxyadenine is complementary to uracil and/or thymine, and 8-hydroxyguanine is complementary to cytosine. Other stable hydrogen bonding of a hydroxynucleobase with a nucleobase of a target nucleic acid can occur, and, therefore, a hydroxynucleobase is considered complementary to the nucleobases of the target nucleic acid to which stable hydrogen bonding occurs.

The acidic tautomeric group in the modified nucleobases can be any other acidic group such as the —SH, —COOH, —SO₂H, etc. In an exemplary embodiment, there is a substantial difference in the stabilization of the complexes between the guanine and cytosine (7a), and the zwitterionic form of 8-mercapto guanine and cytosine (7b), respectively.

In the case of anion of 9-methyl-8-hydroxyguanine, the most stable tautomeric form is the ionized 8-hydroxyl form 5a, which binds energetically similarly to the normal base pairing. However, the most stable tautomer in the solution of the neutral 9-methyl-8-hydroxyguanine, the zwitterionic form 6 presented on Scheme 9, has very strong bonding with cytosine.
The DFT (B3LYP) calculation with 6-31G** basis set using Jaguar (Jaguar 6.5, Schrodinger, LLC, New York, N.Y., 2005) gives the following complex stabilization energy values: -0.038376 a.u. for 7a vs. -0.073251 a.u. for 7b, thus referring to the existence of much stronger bonds in the latter. Consequently, the presence of 8-mercaptoquinazoline and equivalent tautomeric compounds in nucleotides, oligonucleotides and nucleic acids will enhance the stability of RNA-RNA, RNA-DNA, DNA-DNA, RNA-protein and DNA-protein hydrogen-bonded complexes. The stability of these complexes has utility for RNA diagnostics, antisense nucleotide therapies, the nucleic acid microarray diagnostics and for various laboratory diagnostic and clinical methods utilizing them.

In Table 1, the AM1 SCRF (e80) calculated heats of formation ΔH° and the relative tautomeric equilibrium constants ΔPK$_T$ for the above-discussed compounds are given.

TABLE 1

<table>
<thead>
<tr>
<th>Tautomer</th>
<th>ΔH° (kcal/mol)</th>
<th>ΔPK$_T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-170.04</td>
<td>2.37</td>
</tr>
<tr>
<td>1b</td>
<td>-173.31</td>
<td>(0)</td>
</tr>
<tr>
<td>1c</td>
<td>-160.90</td>
<td>9.00</td>
</tr>
<tr>
<td>1d</td>
<td>-155.40</td>
<td>12.92</td>
</tr>
<tr>
<td>2a</td>
<td>-104.41</td>
<td>1.02</td>
</tr>
<tr>
<td>2b</td>
<td>-105.82</td>
<td>(0)</td>
</tr>
<tr>
<td>2c</td>
<td>-105.38</td>
<td>0.32</td>
</tr>
<tr>
<td>2d</td>
<td>-92.93</td>
<td>9.35</td>
</tr>
<tr>
<td>3a</td>
<td>-26.96</td>
<td>(0)</td>
</tr>
<tr>
<td>3b</td>
<td>-13.98</td>
<td>9.42</td>
</tr>
<tr>
<td>3c</td>
<td>-14.09</td>
<td>9.33</td>
</tr>
<tr>
<td>3a</td>
<td>-74.99</td>
<td>(0)</td>
</tr>
<tr>
<td>5b</td>
<td>-42.92</td>
<td>23.26</td>
</tr>
<tr>
<td>5c</td>
<td>-39.18</td>
<td>25.97</td>
</tr>
<tr>
<td>5d</td>
<td>-71.76</td>
<td>2.34</td>
</tr>
</tbody>
</table>

The number of hydroxynucleobases in a given compound of the present invention is at least one, but no more than 20% of the total number of nucleobases of the oligonucleotide portion of the compound. More than 20% hydroxynucleobases can lead to instability of the compound and decreased binding to a target nucleic acid. Preferred numbers of hydroxynucleobases are from about 10% to about 20% of the total number of nucleobases. In cases where more than one hydroxynucleobase is present in the compounds of the present invention, the hydroxynucleobases may be the same or different.

The compounds in accordance with this invention preferably comprise from about 5 to about 150 nucleobases (i.e., from about 5 to about 150 linked nucleosides). One of ordinary skill in the art will appreciate that the invention embodies compounds of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
where R is the rest of the oligonucleotide;

R¹ is selected from hydrogen, C₁₋₈ alkane, C₂₋₈ alkene, C₂₋₈ alkyne, acylC₁₋₈ alkane, cyanoalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₈ alkylaryl, and C₁₋₈ alkylheteroaryl.

R² is independently selected from C₁₋₈ alkyl, C₂₋₈ alkene, C₂₋₈ alkyne, aryl, heteroaryl, C₁₋₈ alkylaryl, C₁₋₈ alkylheteroaryl, and acylC₁₋₈ alkane, and

R³ is independently selected from the group consisting of hydrogen, C₁₋₈ alkane, C₂₋₈ alkene, C₂₋₈ alkyne, acylC₁₋₈ alkane, cyanoalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₈ alkylaryl, and C₁₋₈ alkylheteroaryl.

The term “alkyl” includes straight chained and branched hydrocarbon groups containing the indicated number of carbon atoms, typically methyl, ethyl, and straight chain and branched propyl and butyl groups. The hydrocarbon group can contain up to 16 carbon atoms. The term “alkyl” includes “bridged alkyl,” e.g., a C₆-C₈ bicyclic or polycyclic hydrocarbon group, for example, norbornyl, adamantyl, bicyclo[2.2.2]octyl, bicyclo[2.2.1]heptyl, bicyclo[5.2.1]octyl, and decahydrocyclopentyl. The term “alkyl” also encompasses alkyl groups which are optionally substituted with, e.g., one or more halogen atoms, one or more hydroxyl groups, or one or more thiol groups. The term “cyanoalkyl” is defined as a cyclic C₅-C₁₀ hydrocarbon group, e.g., cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl. “Heterocyloalkyl” is defined similar to cyanoalkyl, except at least one heteroatom is present in the cyclic structure. Suitable heteroatoms include N, S, and O.

The terms “alkenyl” and “alkynyl” are defined identically as “alkyl,” except for containing a carbon-carbon double bond or carbon-carbon triple bond, respectively. “Cyanoalkenyl” is defined similarly to cyanoalkyl, except a carbon-carbon double bond is present in the ring.

The term “alkylene” refers to an alkyl group having a substituent. For example, the term “C₁₋₈ alkenyl” refers to an alkyl group containing one to three carbon atoms, and substituted with an aryl group.

The term “halo” or “halogen” is defined herein to include fluorine, bromine, chlorine, and iodine.

The term “aryl,” alone or in combination, is defined herein as a monocyclic or polycyclic aromatic group, preferably a monocyclic or bicyclic aromatic group, e.g., phenyl or naphthyl. Unless otherwise indicated, an “aryl” group can be unsubstituted or substituted, for example, with one or more, and in particular one to three, halo, alkyl, hydroxy, C(=O) OR, hydroxyalkyl, alkoxy, alkoxyalkyl, haloalkyl,
haloalkoxy, cyano, nitro, amino, alkylamino, acylamino, alkylidio, alkylysulfinyl, and alkylysulfonyl. Exemplary aryl groups include phenyl, naphthyl, tetrahydroanaphthyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2-methylphenyl, 4-methoxyphenyl, 3-trifluoromethylnyl, 4-nitrophenyl, and the like. The terms “arylC₁alkyl” and “heteroarylC₁-C₃ alkyl” are defined as an aryl or heteroaryl group having a C₁-C₃ alkyl substituent.

The term “heteroaryl” is defined herein as a monocyclic or bicyclic ring system containing one or two aromatic rings and containing at least one nitrogen, oxygen, or sulfur atom in an aromatic ring, and which can be unsubstituted or substituted, for example, with one or more, and in particular one to three, substituents, like halo, alkyl, hydroxy, hydroxalkyl, alkoxy, alkoxyalkyl, haloalkyl, nitro, amino, alkyamino, acylamino, alkyldio, alkylysulfinyl, and alkylysulfonyl. Examples of heteroaryl groups include thiényl, furyl, pyridyl, oxazolyl, quinolyl, isoquinolyl, indolyl, triazolyl, isothiazolyl, isoxazolyl, imidazolyl, benzothiazolyl, pyrazinyl, pyrimidinyl, thiazolyl, and thiadiazolyl.

The term “Het” is defined as monocyclic, bicyclic, and tricyclic groups containing one or more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur. A “Het” group also can contain an oxo group (—O) attached to the ring. Nonlimiting examples of Het groups include 1,3-dioxolanyl, 2-pyrazolyl, pyrazolidinyl, pyrrolidinyl, piperazinyl, a pyrrolinyl, 2H-pyranyl, 4H-pyranyl, morpholinyl, thiomorpholinyl, piperidinyl, 1,4-dithianyl, and 1,4-dioxane.

The term “hydroxy” is defined as —OH.

The term “alkoxy” is defined as —OR, wherein R is alkyl.

The term “alkoxyalkyl” is defined as an alkyl group wherein a hydroxyl has been replaced by an alkoxyl group. The term “(alkylthio)alkyl” is defined similarly as alkoxyl-alkyl, except a sulfur atom, rather than an oxygen atom, is present.

The term “hydroxyalkyl” is defined as a hydroxy group appended to an alkyl group.

The term “amine” is defined as —NH₂, and the term “alkylamino” is defined as —NR₂, wherein at least one R is alkyl and the second R is alkyl or hydrogen.

The term “acylamino” is defined as RC(=O)N—, wherein R is alkyl or aryl.

The term “alkylthio” is defined as —SR, wherein R is alkyl.

The term “alklysulfinyl” is defined as RSO₂—, wherein R is alkyl.

The term “alklysulfonyl” is defined as RSO₃—, wherein R is alkyl.

The term “nitro” is defined as —NO₂.

The term “trifluoromethyl” is defined as —CF₃.

The term “trifluoromethoxy” is defined as —OCF₃.

The term “cyano” is defined as —CN.

The calculated nuclease efficiency of a compound of the present invention comprising a chelating moiety complexed to a metal ion increases, depending on the nature of the number of modified nucleobases, up to 10³-10⁴ times in comparison to naturally-occurring nucleases, allowing a corresponding lowering of the effective concentration, and keeping at the same time high specificity of the compound.

Further Modifications of Compounds of the Invention

Other modifications of compounds of this invention are also contemplated. While oligonucleotides are a preferred form of the compounds of this invention, the present invention comprehends other families of compounds as well, including but not limited to oligonucleotide analogs and mimetics such as those described herein.

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn, the respective ends of this linear polymeric compound can be further joined to form a circular compound, however, linear compounds are generally preferred. In addition, linear compounds may have internal nucleobase complementarity and may therefore fold in a manner as to produce a fully or partially double-stranded compound. Within oligonucleotides, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

Modified Internucleoside Linkages (Backbones)

Specific examples of contemplated antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleotides.

Contemplated modified oligonucleotide backbones containing a phosphorus atom therein include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphorthiosters, aminoalkylphosphorothiosters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramic and aminoalkylphosphoramidates, thionoalkylphosphonates, thionoalkylphosphoraminates, thionoalkylphosphorothiosters, selenophosphates and boronophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Contemplated oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be a base (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S. Pat. Nos. 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253;
alkyl and alkylox. Particularly preferred are O(CH₂)nO(CH₃)₂, O(CH₂)₃OCH₃, O(CH₃)₂OCH₂OCH₃, and O(CH₂)₃ON[(CH₃)₂CH₂]₂, where n and m are from 1 to 10. Other preferred oligonucleotides comprise one of the following at the 5' position: C₃ to C₁₀ lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkyaryl, O-alkylaryl or O-alkylal, SH, CH₂, ONH, CN, B, CN, CF₃, OCF, SO₂CH₂, SO₂CH₃, ONO₂, N₃, NH₂, heterocyclic, heterocycalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A contemplated modification includes 2'-methoxyethoxy (2'-O—CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethoxy) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxalkoxy group. A further contemplated modification includes 2'-dimethylaminoethoxyethoxy, i.e., a O(CH₃)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'O-O-dimethyl-amino-ethoxy-ethyl or 2'-DMAOE), i.e., O(CH₃)₂N(CH₃)₂, also described in examples hereinbelow.

Other contemplated modifications include 2'-methoxy (2'-O—CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂OH), 2'-alkyl (2'-CH₃—CH₂—CH₃), 2'-O-alkyl (2'-O—CH₃—CH₂—CH₃) and 2'-fluoro (2'-F). The 2'-modification may be in the arabinose (up) position or ribo (down) position. A preferred 2'-arabinoglycosidic modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3'terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5'terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,900; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is herein incorporated by reference in its entirety.

A further preferred modification of the sugar includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring, thereby forming a bicyclic sugar moiety. The linkage is preferably a methylene (—CH₂—) in group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39552 and WO 99/14226.

Natural and Modified Nucleobases

Oligonucleotides may also include nucleobase (often referred to in the art simply as “base”) modifications or substitutions. As used herein, “unmodified” or “natural” nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thioaracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C≡C—) uracil and cytosine and other alkyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil...
(pseudouracil, 4-thiouracil, 8-halo, 8- amino, 8-thiol, 8-thio-alkyl, 8-hydroxy) and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2'-F-adenine, 2'-amino-adenine, 8-aza- guanine and 8-azaadenine, 7-deazaadenine and 7-deazacadenine and 3-deazaguanine and 3-deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazino cytidine (1H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazino cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazino cytidine (e.g. 9-(2-aminoethoxy)-1H-pyrimido [5,4-b][1,4]benzoxazin-2(3H)-one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (1H-pyrimido[3,2-c][4,5]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deaza-adenine, 7-deaza guanosine, 2-amino pyri- dine and 2- pyridone. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kirschvitz, ed. John Wiley & Sons, 1990, those disclosed by Engles et al., "Amencandie Chemie International Edition", 1991, 30:635, and those disclosed by Sang- livi, Chapter 15, Antisense Research and Applications, pages 289-302, Crooke and Lebleu, ed., CRC Press, 1993.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. No. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,691; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,906; and 5,681,941, each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, also herein incorporated by reference.

Conjugates

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which enhance the activity, cell-ular distribution or cellular uptake of the oligonucleotide. These moieties or conjugates can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include chelating moieties, intercalators, reporter molecules, polyanions, polyamines, polyelectrolytes, polyelectrolytes, etc., groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers.

Typical conjugate groups include cholesterol, lipids, phospholipids, biotin, phenazine, folate, phenanthridine, anthrquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve uptake, enhance resistance to degradation, and/or strengthen sequence-specific hybridization with the target nucleic acid. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve uptake, distribution, metabolism or excretion of the compounds of the present invention. Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196 and U.S. Pat. No. 6,287,860, the entire disclosure of which are incorporated herein by reference.

Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety, cholic acid, a thioether, e.g., hexyl-5-trityltiol, a thiocolesterol, an aliphatic chain, e.g., dodecanol or undecyl residues, a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-O-hexadecyl-me-glycer-3-H-phosphonate, a polyanine or a polyethylene glycol chain, or adamantane acetic acid, a palmitoyl moiety, or an octadecylamine or hexylamino-carbonyloxycholesterol moiety. Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (S)-(+)-pranoprofen, carprofen, danafuracil, 2,3,5-triiodobenzoic acid, Bufenamic acid, folic acid, a benzothiazolide, chlorothiazide, a diaz-epine, indomethacin, a barbiturate, a cephalosporin, a sulfa drug, an antibacterial, or an antibiotic. Oligo- nucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 which is incorporated herein by reference in its entirety.

Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,144,077; 5,486,603; 5,212,439; 5,578,718; 5,608,046; 4,587,044; 4,605,275; 4,789,737; 4,824,941; 4,835,256; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,723; 5,416,203; 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941 each of which is herein incorporated by reference.

Antisense Inhibition

The hybridization of a compound of this invention with a target nucleic acid is generally referred to as “antisense.” Such hybridization can lead to inhibition of translation of the target nucleic acid and is termed “antisense inhibition” herein. Such antisense inhibition is typically based upon hydrogen bonding-based hybridization of oligonucleotide strands or segments that at least one strand or segment is cleaved, degraded, or otherwise rendered inoperable. In this regard, it is presently preferred to target specific nucleic acid molecules and their functions for such antisense inhibition.

The functions of DNA to be interfered with can include replication and transcription. Replication and transcription, for example, can be from an endogenous cellular template, a vector, a plasmid construct or otherwise. The functions of RNA to be interfered with can include functions such as translational of the RNA to a site of protein translation, translation of the RNA to sites within the cell which are distant from the site of RNA synthesis, translation of protein from the RNA, splicing of the RNA to yield one or more RNA species, and catalytic activity or complex formation involving the RNA which may be engaged in or facilitated by the RNA. In the context of the present invention, “modulation” and “modulation of expression” mean either an increase (stimulation) or a decrease (inhibition) in the amount or levels of a nucleic acid molecule encoding the gene, e.g., DNA or RNA. Inhibition is often the preferred form of modulation of expression and mRNA is often a preferred target nucleic acid.

In the context of this invention, “hybridization” means the pairing of complementary strands of oligomeric compounds. In the present invention, the preferred mechanism of pairing involves hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases
(nucleobases) of the strands of oligonucleic compounds. For example, adenine and thymine are complementary nucleobases which pair through the formation of hydrogen bonds. Hybridization can occur under varying circumstances.

An antisense compound is specifically hybridizable when binding of the compound to the target nucleic acid interferes with the normal function of the target nucleic acid to cause a loss of activity, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target nucleic acid sequences under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and under conditions in which assays are performed in the case of in vitro assays.

In the present invention, the phrase “stringent hybridization conditions” or “stringent conditions” refers to conditions under which a compound of the invention will hybridize to its target sequence, but to a minimal number of other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances and in the context of this invention, “stringent conditions” under which oligonucleic compounds hybridize to a target sequence are determined by the nature and composition of the oligonucleic compounds and the assays in which they are being investigated.

“Complementary,” as used herein, refers to the capacity for precise pairing between two nucleobases of an oligonucleic compound. For example, if a nucleobase at a certain position of an oligonucleotide (an oligonucleic compound), is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, said target nucleic acid being a DNA, RNA, or oligonucleotide molecule, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be a complementary position. The oligonucleotide and the further DNA, RNA, or oligonucleotide molecule are complementary to each other when a sufficient number of complementary positions in each molecule are occupied by nucleobases which can hydrogen bond with each other. Thus, “specifically hybridizable” and “complementary” are terms which are used to indicate a sufficient degree of precise pairing or complementarity over a sufficient number of nucleobases such that stable and specific binding occurs between the oligonucleotide and a target nucleic acid.

It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. Moreover, an oligonucleotide may hybridize over one or more segments such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure). It is preferred that the oligonucleotide portion of the compounds of the present invention comprise at least 70% sequence complementarity to a target region within the target nucleic acid, more preferably that they comprise 85% or 90% sequence complementarity, and even more preferably comprise 95% sequence complementarity to the target region within the target nucleic acid sequence to which they are targeted. For example, a compound of the present invention in which 18 of 20 nucleobases of the compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, a compound which is 18 nucleobases in length having 4 (four) noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of a compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215:403-410; Zhang et al., Genome Res., 1997, 7:649-656). For compounds of the present invention having hydroxynucleobases and/or synthetic analogs (such as other synthetic nucleobases), complementarity can be assessed by the synthetic analogs specificity for a particular nucleobase of the target nucleic acid.

While the preferred form of antisense compound is a single-stranded antisense oligonucleotide, in many species the introduction of double-stranded structures, such as double-stranded RNA (dsRNA) molecules, has been shown to induce potent and specific antisense-mediated reduction of the function of a gene or its associated gene products. This phenomenon occurs in both plants and animals and is believed to have an evolutionary connection to viral defense and transposon silencing. The first evidence that dsRNA could lead to gene silencing in animals came in 1995 from work in the nematode, C. elegans (Gor et al., Cell, 1995, 81:611-620). Montgomery et al. have shown that the primary interference effects of dsRNA are posttranscriptional (Montgomery et al., Proc. Natl. Acad. Sci. USA, 1998, 95:15502-15507). The posttranscriptional antisense mechanism defined in C. elegans results from exposure to double-stranded RNA (dsRNA) has since been designated RNA interference (RNAi). This term has been generalized to mean antisense-mediated gene silencing involving the introduction of dsRNA leading to the sequence-specific reduction of endogenous targeted miRNA levels (Fire et al., Nature, 1998, 391:806-811). Recently, it has been shown that it is, in fact, the single-stranded RNA oligomers of antisense polarity of the dsRNAs which are the potent inducers of RNAi (Uijttenman et al., Science, 2002, 295:659-697). Formulations

The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecular structures or mixtures of compounds, as for example, liposomes, carriers, diluents, receptor-targeted molecules, oral, rectal, topical or other formulations for assisting in uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption-assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,399; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term “prodrug” indicates a therapeutic agent that is prepared in an inactive form that is converted to an active
form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE (S acetyl-2-thioethyl) phosphate derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published Dec. 9, 1993 or in WO 94/26764 and U.S. Pat. No. 5,770,713 to Imbouch et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the components of the invention, i.e., salts that retain the desired biological activity of the parent compound and do not impart undesirable toxicological effects thereto. For oligonucleotides, preferred examples of pharmaceutically acceptable salts and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including by nebulizer; intracheal, intramuscular, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intravenous, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2' O-methoxymethyl modification are believed to be particularly useful for oral administration. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general, the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, foams and liposome-containing formulations. The pharmaceutical compositions and formulations of the present invention may comprise one or more penetration enhancers, carriers, excipients, diluents, or other active or inactive ingredients.

Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. Emulsions may contain additional components in addition to the dispersed phases, and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Microemulsions are included as an embodiment of the present invention. Emulsions and their uses are well known in the art and are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

Formulations of the present invention include liposomal formulations. As used in the present invention, the term "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers. Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior that contains the composition to be delivered. Cationic liposomes are positively charged liposomes which are believed to interact with negatively charged DNA molecules to form a stable complex. Liposomes that are pH sensitive or negatively charged are believed to entrap DNA rather than complex with it. Both cationic and noncationic liposomes have been used to deliver DNA to cells, and can be used to deliver compounds of the invention.

Liposomes also include "sterically stabilized" liposomes, a term which, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. Liposomes and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

The pharmaceutical compositions and formulations of the present invention may also include surfactants. The use of surfactants in drug products, formulations and in emulsions is well known in the art. Surfactants and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety.

In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides. In addition to aiding the diffusion of non- lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs. Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants. Penetration enhancers and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. One of skill in the art will recognize that formulations are routinely designed according to their intended use, i.e. route of administration.

Preferred formulations for topical administration include those in which the compounds of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPA ethanalamine, dimyristoylphosphatidyl choline DMPC, distearinphosphatidyl choline DMPC) and cationic (e.g. dioleoyltrimethyaminopropl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA).

For topical or other administration, compounds of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, compounds may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters, pharm...
maceutically acceptable salts thereof, and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315, 298 filed on May 20, 1999, which is incorporated herein by reference in its entirety.

Compositions and formulations for oral administration include powders or granules, microparticulates, nanoparticles, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or mini-tablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which compounds of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts and fatty acids and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Also preferred are combinations of penetration enhancers, for example, fatty acids/ hydroxyproline, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of laurie acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether, lactose, or combinations thereof. Compounds of the invention may be delivered orally, in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Complexing agents and their uses are further described in U.S. Pat. No. 6,287,860, which is incorporated herein in its entirety. Oral formulations and their preparation are described in detail in U.S. application Ser. Nos. 09/108,673, 09/315,298, and 10/071, 822, each of which is incorporated herein by reference in their entirety.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

Certain embodiments of the invention provide pharmaceutical compositions containing one or more compounds of the invention and one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to cancer chemotherapeutic drugs such as daunorubicin, doxorubicin, daunorubicin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, thymidylate synthase, asparaginase, and mycophenolate mofetil. Antitumor agents and anti-inflammatory drugs, and corticosteroids, and antiviral drugs, including but not limited to ribavirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. Combinations of antisense compounds and other non-antisense drugs are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Alternatively, compositions of the invention may contain two or more antisense compounds targeted to different regions of the same nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

Dosing
The formulation of therapeutic compositions and their subsequent administration (dosing) is believed to be within the skill of those in the art, and determined, e.g., by dos-response, toxicity, and pharmacokinetic studies. Dosing is dependent on severity and spontaneous rate of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Dosing may continue indefinitely for chronic disease states or conditions for which diminution but no cure can be achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill in the art can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50 found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 μg to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μg to 100 g per kg of body weight, once or more daily, to once every 20 years.

Application of Compounds of the Present Invention
The compounds of the present invention may be used in vitro or in vivo for modifying the phenotype of cells, or for limiting the proliferation of pathogens such as viruses, bacteria, protists, Mycoplasma species, Chlamydia or the like, or for inducing morbidity in neoplastic cells or specific classes of normal or diseased cells. Thus, the compounds may be administered to an organism which is subject to or in a diseased state. When administered to an organism, the compounds may be used to treat infection by a variety of pathogens, for example, enterotoxigenic bacteria, Pneumococci, Neisseria organisms, Giardia organisms, and Entamoeba. The compounds may also be used as cytotoxic or cytostatic agents for neoplastic cells, such as carcinoma cells, sarcoma cells, and lymphoma cells. The compounds may be used to modulate the function of immune system cells such as specific B-cells; specific T-cells, such as helper cells, suppressor cells, cytotoxic T-lymphocytes (CT), and natural killer (NK) cells. Modulation of immune function using the compounds
of the present invention can be useful in treatment of a variety of diseases such as cancer and immune system disease.

The compounds may be selected so as to be capable of interfering with transcription or expression of proteins by any of the mechanisms involved with the binding of the oligonucleotide of the compound to its target sequence. These mechanisms may include interference with processing, inhibition of transport across the nuclear membrane, cleavage by endonucleases, or the like.

The oligonucleotide of the compound may be complementary to nucleic acid sequences such as those encoding growth factors, lymphokines, immunoglobulins, T-cell receptor sites, MIC antigens, DNA or RNA polymerases, antibiotic resistance, multiple drug resistance (mdr), genes involved with metabolic processes, such as the formation of amino acids, nucleic acids, or the like. The oligonucleotide may be complementary to nucleic acid sequences including introns or flanking sequences associated with the open reading frames.

The compounds of the present invention may be used in the treatment of infectious diseases, cancers, autoimmune diseases and conditions associated with organ transplants. In the treatment of infectious diseases, the target nucleic acid sequences include those genes associated with AIDS; CMV; herpes, drug resistance polyomaviruses, and trypanosomes. In the treatment of cancer, the target nucleic acid sequences can be DNA or RNA associated with oncogenes, tumor suppressor genes, and related genes. Additionally, the compounds of the present invention may also target genes associated with drug resistance and their gene products. For the treatment of autoimmune diseases, the compounds can, for example, target nucleic acid sequences associated with rheumatoid arthritis, Type 1 diabetes, systemic lupus and multiple sclerosis.

As disclosed herein, the present invention is not limited to any type of target gene or nucleotide sequence and is applicable to any gene for any organism or virus, for example. But the following classes of possible target genes are listed for illustrative purposes: developmental genes (e.g., adhesion molecules, cyclin kinase inhibitors, Wnt family members, Pax family members, Winged helix family members, Iox family members, cytokines/lymphokines and their receptors, growth/differentiation factors and their receptors, neurotransmitters and their receptors); oncogenes (e.g., ABL—GenBank Accession No. BC 107069; BCL—GenBank Accession No. NM 505305; BCL2—GenBank Accession No. NM 181505; BCL6—GenBank Accession No. NM 138953; CBFA2—GenBank Accession No. NM 001001980; CBL—GenBank Accession No. NM 138392; CSF1R—GenBank Accession No. CT471062; ERBA—GenBank Accession No. NM 021724; ERBB—GenBank Accession No. NM 138573; ERBB2—GenBank Accession No. NM 181505; ETS1—GenBank Accession No. NM 005238; ETV6—GenBank Accession No. NM 002336; FGR—GenBank Accession No. NM 153048; FLT1—GenBank Accession No. NM 004119; FOS—GenBank Accession No. NM 00180547; FYN—GenBank Accession No. NM 163635; HCR—GenBank Accession No. NM 003965; HRAS—GenBank Accession No. NM 000789; SOCS6—GenBank Accession No. NM 004232; KRAS—GenBank Accession No. NM 176795; LCK—GenBank Accession No. LYN—GenBank Accession No. NM 00142771; MET—GenBank Accession No. NM 017956; MD2—GenBank Accession No. NM 022045; MLL—GenBank Accession No. NM 012801; MYB—GenBank Accession No. NM 014520; MYC—GenBank Accession No. NM 032789; MYC1—GenBank Accession No. NM 00103082; MYCN—GenBank Accession No. NM 005378; NRAS—GenBank Accession No. NM 002524; PIM1—GenBank Accession No.; PML—GenBank Accession No. NM 002648; RFT—GenBank Accession No. NM 026630; SRC—GenBank Accession No. NM 016848; TAL1—GenBank Accession No.; NM 003189; TCL1—GenBank Accession No. NM 021966; TLX1—GenBank Accession No. NM 005521; and YES—GenBank Accession No. NM 006106); tumor suppressor genes (e.g., APC—GenBank Accession No. NM 000038; BRCA1—GenBank Accession No. NG 005905; BRCA2—GenBank Accession No. NM 007305; MADH4—GenBank Accession No. NM 005359; MCC—GenBank Accession No. NM 021125; NF1—GenBank Accession No. NM 017940; NF2—GenBank Accession No. NM 181831; RB1—GenBank Accession No. NM 003231; TP53—GenBank Accession No. EF432550; and WT1—GenBank Accession No. NM 024426); enzymes (e.g., ACC synthases and oxidases, ACP desaturases and hydroxylases, ADP-glucose pyrophosphorylases, ATPases, alcohol dehydrogenases, amylases, amyloglucosidases, catalases, cellulases, chalcone synthases, chitinases, cyclooxygenases, decarboxylases, dextrinases, DNA and RNA polymerases, galactosidases, glucanases, glucose oxidases, granule-bound starch synthases, GTases, helicas, hemi-cellulases, integrases, inulinas, invertases, isomerases, kinases, lactases, lipases, lipoxigenases, lysyromines, nopoline synthase, octopaminases, peroxidases, phosphatases, phospholipases, phosphorylases, phytases, plant growth regulator synthases, polygalacturonases, proteinases and peptidases, pullanases, recombinases, reverse transcriptases, RUBISCO, topoisomerases, and xylanases); genes of pathogenic microbes (e.g., Pseudomonas species, Escherichia coli, Plasmodium, and Chlamydia); genes of pathogenic viruses (e.g., HIV, hepatitis, herpes, influenza, rhinoviruses, adenviruses, and negative strand RNA viruses); commercially relevant genes (e.g., genes for antibodies, growth factor genes, and hormone genes); animal viruses (e.g., FMDV—GenBank Accession No. DJ902653 and FIV—GenBank Accession No. DQ531584); plant viruses (e.g., PVY—GenBank Accession No. EF470241; TMV—GenBank Accession No. AB264547; and CMV—GenBank Accession No. NC 002034).

In addition to binding nucleic acids, the compounds of the present invention may also be employed for binding to proteins including, but not limited to, ligands, receptors, and/or enzymes, whereby the compounds inhibit the activity of the proteins.

"Targeting" an antisense compound to a particular nucleic acid molecule, in the context of this invention, can be a multiplex process. The process usually begins with the identification of a target nucleic acid whose function is to be modulated. This target nucleic acid may be, for example, a cellular gene (or mRNA transcribed from the gene) whose expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent.

The targeting process usually also includes determination of at least one target region, segment, or site within the target nucleic acid for the antisense interaction to occur such that the desired effect, e.g., modulation of expression, will result. Within the context of the present invention, the term "region" is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic. Within regions of target nucleic acid components, "segments" are defined as smaller or sub-portions of regions within a target nucleic acid. "Sites," as used in the present invention, are defined as positions within a target nucleic acid.

Since, as is known in the art, the translation initiation codon is typically 5' AUG (in transcribed mRNA molecules; 5'ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the "AUG codon," the "start
codon" or the "AUG start codon." A minority of genes have a translation initiation codon having the RNA sequence 5' GUG, 5' UUG or 5' CUG, and 5' UAA, 5' ACG and 5' CUG have been shown to function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, "start codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA transcribed from a gene encoding interleukin 18, regardless of the sequence(s) of such codons. It is also known in the art that a translation termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5' UAA, 5' UAG and 5' UGA (the corresponding DNA sequences are 5' TAA, 5' TAG and 5' TGA, respectively).

The terms "start codon region" and "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon. Consequently, the "start codon region" (or "translation initiation codon region") and the "stop codon region" (or "translation termination codon region") are all regions which may be targeted effectively with the antisense compounds of the present invention.

The open reading frame (ORF) or "coding region," which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Within the context of the present invention, a preferred region is the intragenic region encompassing the translation initiation or termination codon of the open reading frame (ORF) of a gene.

Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA (or corresponding nucleotides on the gene), and the 3' untranslated region (3'UTR), known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA (or corresponding nucleotides on the gene). The 5' cap site of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap site. It is also preferred to target the 5' cap region.

Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. Targeting splice sites, i.e., exon-exon junctions or exon-intron junctions, may also be particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular splice product is implicated in disease. Ablation fusion junctions due to rearrangements or deletions are also preferred target sites. mRNA transcripts produced via the process of splicing of two (or more) mRNAs from different gene sources are known as "fusion transcripts." It is also known that introns can be effectively targeted using antisense compounds targeted to, for example, DNA or pre-mRNA.

It is also known in the art that alternative RNA transcripts can be produced from the same genomic region of DNA. These alternative transcripts are generally known as "variants." More specifically, "pre-mRNA variants" are transcripts produced from the same genomic DNA that differ from other transcripts produced from the same genomic DNA in either their start or stop position and contain both intronic and exonic sequence.

Upon excision of one or more exon or intron regions, or portions thereof during splicing, pre-mRNA variants produce smaller "mRNA variants". Consequently, mRNA variants are processed pre-mRNA variants and each unique pre-mRNA variant must always produce a unique mRNA variant as a result of splicing. These mRNA variants are also known as "alternative splice variants". If no splicing of the pre-mRNA variant occurs then the pre-mRNA variant is identical to the mRNA variant.

It is also known in the art that variants can be produced through the use of alternative signals to start or stop transcription and that pre-mRNAs and mRNAs can possess more that one start codon or stop codon. Variants that originate from a pre-mRNA or mRNA that use alternative start codons are known as "alternative start variants" of that pre-mRNA or mRNA. Those transcripts that use an alternative stop codon are known as "alternative stop variants" of that pre-mRNA or mRNA. One specific type of alternative stop variant is the "polyA variant" in which the multiple transcripts produced result from the alternative selection of one of the "polyA stop signals" by the transcription machinery, thereby producing transcripts that terminate at unique polyA sites. Within the context of the invention, the types of variants described herein are also preferred target nucleic acids.

The locations on the target nucleic acid to which the preferred antisense compounds hybridize are herein below referred to as "preferred target segments." As used herein the term "preferred target segment" is defined as at least a 5-nucleobase portion of a target region to which an active antisense compound is targeted. While not wishing to be bound by theory, it is presently believed that these target segments represent portions of the target nucleic acid which are accessible for hybridization.

While the specific sequences of certain preferred target segments are set forth herein, one of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Additional preferred target segments may be identified by one having ordinary skill.

Target segments 5-150 nucleobases in length comprising a stretch of at least five consecutive nucleobases selected from within the illustrative preferred target segments are considered to be suitable for targeting as well. Target segments may include DNA or RNA sequences that comprise at least the 5' consecutive nucleobases from the 5'-terminus of one of the illustrative preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 150 nucleobases). Similarly preferred target segments are represented by DNA or RNA sequences that comprise at least the 5 consecutive nucleobases from the 3'-terminus of one of the illustrative
preferred target segments (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3'-terminus of the target segment and continuing until the DNA or RNA contains about 5 to about 150 nucleobases). One having skill in the art armed with the preferred target segments illustrated herein will be able, without undue experimentation, to identify further preferred target segments.

Once one or more target regions, segments or sites have been identified, antisense compounds are synthesized which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect, and incorporate at least one hydroxynucleobase which is complementary to a nucleobase in the sequence of the target region, segment, or site, and further incorporates a chelating moiety as described herein. The antisense compound is then contacted with a ion of a metal to allow for complexation of the ion to the compound. This resulting compound can then be used in antisense therapy mechanisms.

Kits and Diagnostic Tools

The compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. Furthermore, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes or to distinguish between functions of various members of a biological pathway.

For use in kits and diagnostics, the compounds of the present invention, either alone or in combination with other compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

As one nonlimiting example, expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathways, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense compounds have been employed as therapeutic moieties in the treatment of disease states in animals, including humans. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that antisense compounds can be useful therapeutic modalities that can be configured to be useful in treatment regimes for the treatment of cells, tissues and animals, especially humans.

For therapeutics, a subject, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of a target nucleic acid is treated by administering antisense compounds in accordance with this invention. For example, in one non-limiting embodiment, the methods comprise the step of administering to the subject in need of treatment, a therapeutically effective amount of an antisense compound. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of a compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the compounds and methods of the invention may also be useful prophylactically.

Additional aspects and details of the disclosure will be apparent from the following examples, which are intended to be illustrative rather than limiting.

EXAMPLES

Synthesis of Oligonucleotides with Modified Nucleotides

Synthesis of GCAGCCAAAAAGTCCN (SEQ ID NO: 1) or CTTCCN (SEQ ID NO: 5)

5'-Hydroxy-2'-deoxyadenosine 5'-triphosphate was synthesized using a procedure similar to that described for the synthesis of 5'-hydroxyadenosine 5'-diphosphate. Twenty five mg (45 µmole) of dCTP (as the sodium salt) was dissolved in 200 µl of water and then cooled to 4°C. Bromine was slowly added with vigorous mixing to the dCTP solution until the yellow color persisted. To remove excess bromine, 7 µl of cyclohexene was added with shaking, followed by 0.1 ml of 2,4,6-collidine. The emulsion was incubated for about 2 hours at 37°C and then extracted with ether (4×0.5 ml). The aqueous layer was evaporated under vacuum, redissolved in water, and loaded on a DEAE-Sephadex A-25 column (about 80 ml, HCO₃⁻ form). The fraction containing triphosphates was eluted from the column with a linear gradient of triethylammonium bicarbonate (TEAB), pH 7.5-8 (5 mM to 0.8 M). Fractions containing a mixture of nucleotide triphosphates were pooled and evaporated several times with 50% ethanol to remove TEAB. 5'-OHdCTP was further purified twice on a Mono Q column using first a linear gradient of NaCl from 5 mM to 0.7 M in 20 mM Tris-HCl buffer, pH 7.5, and finally a linear gradient from 5 mM to 0.7 M sodium phosphate buffer, pH 3.5. The peak of 5'-OHdCTP was collected, diluted with water, and reloaded on a DEAE sephadex A-25 column (2.5 ml, HCO₃⁻ form). The column was washed with 0.1 M ammonium bicarbonate to remove salt followed by the elution of 5'-OHdCTP with 0.6 M ammonium bicarbonate. The ammonium bicarbonate was removed by repeated evaporation with 50% ethanol. The yield of 5'-OHdCTP was about 25-30%.
The molar absorptivity (ε=7700 [X=292 nm]) (15) was used to calculate the amount of 5-OHdTCTP.

Oligonucleotides containing a single, internal 5-OHdC were prepared by a modification of the method previously described. One to 25 nmol of GCAGCCCCCCAGTCCCC (SEQ ID NO: 2) or CCACTCG (SEQ ID NO: 3) were incubated for 30 min. at 30 °C in 65 μl of buffer containing 100 mM sodium cacodylate pH 7.0, 1 mM EDTA, 50 μg/ml of BSA, 0.1 mM DTT, 10 μM 5-OHdTCTP, and 100 units of terminal deoxynucleotidyl transferase. The oligonucleotides, extended from the 3'-end with a single 5-OHdTCTP, were then HIPPC purified on a Poroshper SAX column (0.4×12.5 cm, Whatman) using a linear gradient of sodium phosphate buffer, pH 6.3 (from 5 mM to 0.5 M over 60 min), containing 25% acetonitrile. The purified extended oligonucleotides, GCGAGCGCGGAGCACCCCG (SEQ ID NO: 4) or CCACTCG (SEQ ID NO: 5) (N=5-OHdC or 5-OHdT), were desalted using a NEPH1T column (Pharmacia).

Synthesis of Rare Earth Metal Complexes and their Conjugates with Oligonucleotides

Materials

Cyclam (Aldrich, 98%), 4-chloromethylbenzoyl acid (Aldrich, 95%), trifluoroacetylacetate (Aldrich, 99%), N-hydroxyisocyanide (Aldrich, 97%), 1-(3-dimethylamino)-3-ethylcarbodiimide hydrochloride (Sigma, Prot. Seq. Grade), Europium triflate (Aldrich, 98%), Lanthanum triflate (Aldrich, 99.999%), Silica gel (Aeros Organics, USA) having particle size of 60-200 μm and pore size of 4 nm, Sephadex G-25 (Sigma-Aldrich) with a particle size of 40-125 μm and capacity of 3.4 mg/g.

Synthesis of 4-(1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid

To solution of Cyclam (0.913 g, 4.5 mmol) dissolved in a mixture of ethanol/water (5:1 by vol.) (18 ml) was added a solution of 4-chloromethylbenzoyl acid (0.157 g, 0.92 mmol) in aqueous 1:1OH1 (53 mg in 4 ml of water). This mixture was thereafter refluxed vigorously with stirring for 3 hours. Then the solvent was removed at reduced pressure, and the residue was dissolved in 13 ml of water. The aqueous solution obtained was then extracted with chloroform (10 times 3 ml) and the aqueous layer was concentrated at reduced pressure down to 2 ml. The product as a white solid was precipitated by adding the solution of concentrated HCl and ethanol and purified by recrystallizing from ethanol/water/HCl to yield 0.205 g of the title compound. According to the LC-MS, the analysis of 4-(1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid hydrochloride was >95%.

Synthesis of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid

To a two-neck round bottom flask purged with argon was added successively 4-(1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid (90 mg, 0.24 mmol), dry methanol (1 ml), dry triethylamine (0.5 ml) and trifluoroacetylacetate (1.7 ml). All following procedures were carried on in argon atmosphere. The mixture was stirred for 60 hours. After that the solvents were removed at reduced pressure and the residue was taken up in dry tetrahydrofuran (5 ml). The THF solution was filtered and the solvent removed at reduced pressure. The residue was dried in vacuo for 4 hours to produce 0.54 g of oily compound. MS m/z 623.5 [M+Cu₂⁺F₃⁻] +1.

Synthesis of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester

The flask containing 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid (0.54 g) was purged with argon and successively were added dry THF (1.2 ml), N-hydroxysuccinimide (28 mg, 0.24 mmol) and 1-(3-dimethylaminomethyl)-3-ethylcarbodiimide hydrochloride (51.6 mg, 0.27 mmol). This mixture was stirred under argon for 60 hours at room temperature. Then the solvent was removed at reduced pressure, the residue was dissolved in a minimum amount of chloroform and passed through a silica gel column. The product was eluted with chloroform/methanol (50:1). After concentrating with rotary evaporator and drying in vacuo, 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester was collected as a white solid substance with the yield of 70 mg. LC-MS spectra of the product confirmed that the main fraction has a mass of 721 [M+C₈H₁₆F₃N₄O₁₇]+, which gives a fragment with a mass of 623 ([M-C₈F₁₆O₁]+). The minor fraction (1%) was detected as:

MS m/z 855.7 [M(C₃H₄F₂N₄O₁₇)+1]

General procedure for making the La and Eu complexes of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester

The equimolar (~20 μmol) mixture of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester and lanthanide triflate, La(CF₃SO₃)₃ or Eu(CF₃SO₃)₃, in dry ethanol (2 ml) was stirred in argon atmosphere at room temperature for 22 hours. After that, the solvents were removed at reduced pressure, and the residue was taken up by acetonitrile (0.5 ml). After addition of ether (0.7 ml), the mixture was kept at freezer for 48 hours, filtered and then dried under vacuum to yield the pale yellow solids of La and Eu complexes of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester.

The synthesis of the other ligands may be made using known synthetic techniques. See, e.g., U.S. Pat. Nos. 6,984,734; 6,127,121; and 5,684,149, each of which is incorporated in its entirety by reference herein.

Conjugation of La and Eu complexes of 4-(4,8,11-Tris-(2,2,2-trifluoroacetyl)-1,4,8,11-tetraazacyclotetradecyl-1-ylmethyl)-benzoic acid 2,5-dioxopyrrolidin-1-yl ester to oligonucleotide

Two differently modified 20-mer oligonucleotides are synthesized: 5'-CTT CGC GTT TAC GTT GN-3' (N=5-OH—C or G) (SEQ ID NO: 6).
About 10 nmol of each oligonucleotide is dissolved in 300 µL of a 200 mM NaHCO₃ solution. The resulting solution is then added to a solution of the lanthanide complex of the tetrazza macrocycle (0.64 mg) in dioxane (200 µL). The resultant mixture is stirred vigorously for 3 h at room temperature. Then, the mixture is passed through the Sephadex G-25 column (1.5 x 5.5 cm) packed in potassium phosphate buffer (pH 6.86). The product is eluted with the same phosphate buffer and the last 13 ml of the total 15 ml of extract are collected and reduced to the volume of ~0.5 ml in vacuo at room temperature.

In Vitro Activity Measurements

The activity of the lanthanum- and europium-complexed compounds are measured by mixing a solution of a target nucleic acid (e.g., 5'-CGG ACG TAA ACG GCC AGA AG-3' (SEQ ID NO: 7)) with each of the complexed compounds under conditions which simulate human physiological conditions (e.g., temperature and salt conditions). The compound and target nucleic acid are mixed and allowed to interact. Aliquots of the mixtures are taken out and analyzed for the presence or degradation of the target nucleic acid. Amounts of target nucleic acids are measured. The rate of degradation of the target nucleic acid directly correlates to the nuclease activity of the lanthanum- and europium-complexed compounds.

Stability of Oligonucleotides Having Hydroxy-Nucleic Acids Incorporated: 5'-CTT CTN NCC TTT TAC TNC NC-3' (N-G or 8-OH G) (SEQ ID NO: 8)

A series of oligonucleotides were labeled at the 5'-end of the polynucleotide chain with 35S-ε-ATP with T4 polynucleotide kinase. The labeled oligonucleotides were purified and liberated from the free labeled 35S-ε-ATP using Pharmacia PD10 gel filtration columns. The specific activity of the oligonucleotides was between 0.05-0.2 µCi/µg of oligonucleotide.

Labeled oligonucleotides (1-10 nM) were incubated in the 5 mM HEPES buffer, pH 7.5, containing 100 mM KCl and 80% fetal bovine serum, and incubated for indicated time at the temperature of 37°C. At indicated time intervals aliquots of the of the reaction mixture were removed and diluted 5-fold with the loading dye containing 0.05% bromophenol blue, 0.05% xylene cyanol, 7M urea and 0.5×TBE buffer. The degraded oligonucleotides were analyzed using 20% polyacylamide gel electrophoresis. The bands were cut out from the gel and the radioactivity was counted using Wallac Micro Beta scintillation counter.

Protocols used were as described in Maniatis, T., Fritsch, E. F. and Sambrook, J. Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1082.

The results demonstrate a distinct stabilization by the incorporation of hydroxynucleobases into the oligonucleotides (FIG. 1). The notations in FIG. 1 correspond to native oligomer (SEQ ID NO: 8 wherein all N are G) and the oligomers with one (1-mold; 5'-CTT CTN GCC TTT TAC TGC GC-3'; SEQ ID NO: 9; N-8-OH G), two (2-mold; 5'-CTT CTN GCC TTT TAC TGC GC-3'; SEQ ID NO: 10; N-8-OH G) and three (3-mold; 5'-CTT CTN GCC TTT TAC TGC GC-3'; SEQ ID NO: 11; N-8-OH G).

The presence of strongly bound tauromers appreciably increases the melting temperature of the respective nucleic acid duplexes. The measured melting temperature of a normal duplex of SEQ ID NO: 8, wherein all N are G is 67±2°C. In contrast, the melting temperature of the same oligomer with two 8-hydroxyguanine substitutions (SEQ ID NO: 10) is 71±2°C.

RNA Degradation Using Oligonucleotides Incorporating 8-Hydroxy Guanine

Both 35S-labeled and unlabelled sense and antisense RNAs encoding the enhanced green fluorescent protein (eGFP) were prepared for in vitro monitoring of RNA degradation. The eGFP was cloned into pcR3.1 expression vector under the control of T7 RNA polymerase promoter in two orientations: sense and antisense orientation. Sense and antisense eGFP RNAs were synthesized in vitro using T7 RNA polymerase 35S-labeled ribonucleotide triphosphates using standard protocols. For this analysis, equal amounts of 35S-labeled RNA were incubated with different concentrations of the complementary oligonucleotides to eGFP. The oligonucleotides had either zero (SEQ ID NO: 8) or one 8-hydroxy guanine incorporated (SEQ ID NO: 9). Both the natural and the modified oligonucleotides were complexed with a lanthanide known to have ribonuclease activity. The RNA and the oligonucleotides were incubated for 1 hour at 37°C. The RNA then was analyzed on the 1% agarose gel electrophoresis. The gel was visualized with autoradiography, and the RNA bands were cut out, hydrolyzed, and counted using a Wallac scintillation counter. The quantitative results are shown in FIG. 2, which depicts the amount of undegraded RNA still remaining. Columns 1 and 3 of FIG. 2 show results from the incubation of eGFP RNA with oligonucleotide-lanthanide complexes having a 8-hydroxyguanine incorporated at 10 µM and 5 µM, respectively. Columns 2 and 4 of FIG. 2 show results from the incubation of eGFP RNA with oligonucleotide-lanthanide complexes with natural guanine at 10 µM and 5 µM, respectively. Columns 5 and 6 of FIG. 2 represent control experiments having no oligonucleotide-lanthanide complex added. The results of these experiments clearly show that oligonucleotides with one modification form a more stable complex with target eGFP RNA and enhances its degradation (compare columns 1 and 2 and column 3 and 4). The oligonucleotide-lanthanide complex containing a single 8-hydroxyguanine modification in the exhibited nuclease activity at 5 µM, while the oligonucleotide-lanthanide complex containing natural guanine exhibited virtually no nuclease activity.

Analyses of RNA degradation by lanthanide-oligonucleotide complexes. eGFP RNA was incubated with normal or modified 20 nucleotides long oligonucleotides complementary to eGFP. The incubation was at 37°C for 1 hour. In this experiment, unlabeled RNA was used, and the results were analyzed by electrophoresis using a 1% agarose gel. The RNA on the gel was visualized by ethidium bromide staining.

FIG. 3 shows the results of this experiment. The upper gel shows the degradation of eGFP RNA after incubation with unmodified oligonucleotide-lanthanide complex (1,4,8,11-tetraazacyclotetradecyl europium complex with SEQ ID NO: 8) and the lower gel is a modified oligonucleotide-lanthanide complex (1,4,8,11-tetraazacyclotetradecyl europium complex with SEQ ID NO: 9), where the oligonucleotide has a single modification to a hydroxynucleobase. The lanes on both the upper and lower gels are as follows: 1. Molecular weight and nucleic acid size markers; 2. Oligonucleotide-lanthanide complex at 10 µM; 3. Oligonucleotide-lanthanide complex at 10 µM; 4. Oligonucleotide-lanthanide complex at 5 µM; 5. Oligonucleotide-lanthanide complex at 5 µM; 6. Control (sense RNA); 7. Control (antisense RNA).
The results as shown in FIG. 3 indicate that an oligonucleotide with a modification is more stable and active in the complex with lanthanide.

DOCUMENTS CITED

All of the documents listed here are incorporated by reference for the materials, methods, and procedures that they teach.

U.S. Patent Documents

Other Publications

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOs: 11
<210> SEQ ID NO 1
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)...(16)
<223> OTHER INFORMATION: m5-hydroxycytosine
<400> SEQUENCE: 1

gcagccasaacgtcc

<210> SEQ ID NO 2
<211> LENGTH: 15
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 2

gcagccasaacgtcc

<210> SEQ ID NO 3
<211> LENGTH: 6
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 3

cctcgg

<210> SEQ ID NO 4
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)...(16)
<223> OTHER INFORMATION: m5-hydroxycytosine or 5-hydroxuryracil
<400> SEQUENCE: 4

gcagccasaacgtccnn

<210> SEQ ID NO 5
<211> LENGTH: 7
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: m5-hydroxycytosine or 5-hydroxuryracil
<400> SEQUENCE: 5

cctcogn

<210> SEQ ID NO 6
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (20)...(20)
<223> OTHER INFORMATION: n5-hydroxycytosine or cytosine
<400> SEQUENCE: 6

ctcttgccg tttaeetcg

<210> SEQ ID NO: 7
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<400> SEQUENCE: 7
gcagaaca a cgcgcagag

<210> SEQ ID NO: 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (6)...(6)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7)...(7)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (9)...(9)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (10)...(10)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (11)...(11)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (16)...(16)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (19)...(19)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<400> SEQUENCE: 8

ccttcncnc tttacntncn

<210> SEQ ID NO: 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic primer
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (6)...(6)
<223> OTHER INFORMATION: m7,8-dihydro-8-oxoguanine
<400> SEQUENCE: 9
ccttcgcgc tttaegtcgc

<210> SEQ ID NO: 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
What is claimed is:

1. A compound comprising an oligonucleotide having from 5 to 150 nucleobases and a chelating moiety attached to the oligonucleotide, wherein at least 10% of said nucleobases are a modified nucleobase selected from the group consisting of: 5-mercaptocytosine, 5-mercaptopurine, 8-mercaptopurine, 8-mercaptopurine, 5-hydroxycytosine, 5-hydroxycytosine, 8-hydroxyadenine and 8-hydroxyguanine.

2. The compound of claim 1, wherein the modified nucleobase is a hydroxynucleobase selected from the group consisting of 5-hydroxycytosine, 5-hydroxycytosine, 8-hydroxyadenine and 8-hydroxyguanine.

3. The compound of claim 1 comprising from 10 to 100 nucleobases.

4. The compound of claim 1 comprising from 10 to 50 nucleobases.

5. The compound of claim 1 comprising from 20 to 30 nucleobases.

6. The compound according to claim 1, wherein at least 2 of the nucleobases are hydroxynucleobases selected from the group consisting of 5-hydroxycytosine, 5-hydroxycytosine, 8-hydroxyadenine and 8-hydroxyguanine.

7. The compound according to claim 6, wherein from 10% to 20% of the nucleobases are the hydroxynucleobases.

8. The compound according to claim 1, wherein the chelating moiety has a formula:

\[
\text{ROOC} \quad \text{N} \quad \text{OH} \quad \text{COO}\', \quad \text{N} \quad \text{COO}\', \quad \text{R} \quad \text{N} \quad \text{OH} \quad \text{HO} \quad \text{N} \quad \text{R}\]

wherein \(R \) is the oligonucleotide.

9. The compound according to claim 1, wherein the chelating moiety has a formula:

\[
\text{ROOC} \quad \text{N} \quad \text{OH} \quad \text{COO}\', \quad \text{N} \quad \text{COO}\', \quad \text{R} \quad \text{R'} \quad \text{R''} \quad \text{R'} \quad \text{R''} \quad \text{N} \quad \text{N} \quad \text{R}\]

wherein \(R \) is the oligonucleotide; and wherein \(R' \) are independently selected from the group consisting of hydrogen, \(C_{1-8} \) alkane, \(C_{2-8} \) alkenes, \(C_{2-8} \) alkyne,
acylC₈₋₆alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₆alkylaryl, and C₁₋₆alkylnheteroaryl.

10. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide; and
wherein R² is selected from C₁₋₆alkyl, C₂₋₈alkene, C₂₋₈alkyne, aryl, heteroaryl, C₁₋₆alkylaryl, C₁₋₆alkylnheteroaryl, and acylC₁₋₆alkane.

11. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide; and
wherein R¹ are independently selected from the group consisting of hydrogen, C₁₋₆alkane, C₂₋₈alkene, C₂₋₈alkyne, acylC₁₋₆alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₆alkylaryl, and C₁₋₆alkylnheteroaryl.

12. The compound of claim 11, wherein R¹ are independently selected from hydrogen, —C(O)CF₃ and —CH₂Phenyl, and wherein Phenyl is substituted with H, OH, C(O)Oalkylaryl, C(O)Oalkyl, or alkyl.

13. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide; and
wherein R¹ is selected from the group consisting of hydrogen, C₁₋₆alkane, C₂₋₈alkene, C₂₋₈alkyne, acylC₁₋₆alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₆alkylaryl, and C₁₋₆alkylnheteroaryl.

14. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide.

15. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide; and
wherein R² are independently selected from the group consisting of hydrogen, C₁₋₆alkane, C₂₋₈alkene, C₂₋₈alkyne, acylC₁₋₆alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₆alkylaryl, and C₁₋₆alkylnheteroaryl.

16. The compound according to claim 1, wherein the chelating moiety has a formula:

wherein R is the oligonucleotide.

17. The compound of claim 1, further comprising an ion of a metal, wherein the metal is selected from the group consisting of lanthanum, cerium, praseodymium, neodymium,
promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.

18. The compound of claim 17, wherein the metal is europium or lanthanum.

19. A composition comprising the compound according to claim 1 and a pharmaceutically acceptable carrier.

20. The composition of claim 19 further comprising a delivery vehicle.

21. The composition of claim 20, wherein the delivery vehicle comprises a liposome, wherein the compound is contained within the liposome.

22. A method of inhibiting translation of a target nucleic acid comprising contacting the target nucleic acid with a compound according to claim 1, or a composition according to claim 19, under conditions that permit hybridizing of the compound to the target nucleic acid, wherein the hybridized compound inhibits translation of the target nucleic acid.

23. The method of claim 22 wherein the target nucleic acid is in an organism.

24. The method of claim 23 wherein the contacting comprises administering to the organism a composition that comprises the compound and a pharmaceutically acceptable carrier.

25. The method of claim 23, wherein the organism is a human or animal subject.

26. The method of claim 23, wherein the contacting comprises mixing the compound with a biological sample that comprises the target nucleic acid.

27. The method according to claim 22, wherein the hybridizing induces a cleavage of the target nucleic acid.

28. The method of claim 22, wherein the target nucleic acid is mRNA.

29. The method of claim 22, wherein the compound cleaves a bond of the target nucleic acid.

30. The method of claim 25, wherein the human or animal subject suffers from a viral infection, bacterial infection, microbial infection, fungal infection, or cancer.

31. A method of inhibiting translation of a nucleic acid in an organism, comprising:
 a) determining a nucleotide sequence of a target nucleic acid in an organism; and
 b) administering to the organism a composition according to claim 19, wherein the compound comprises a nucleotide sequence, wherein, under physiological conditions of the organism, said compound is sufficiently complementary to the nucleotide sequence of the target nucleic acid to hybridize thereto in the organism, thereby inhibiting translation of the nucleic acid.

32. The method according to claim 26, wherein the nucleotide sequence of the compound is fully complementary to all or a portion of the nucleotide sequence of the target nucleic acid.

33. A method of making a compound to inhibit translation of a nucleic acid of an organism under physiological conditions of the organism, comprising:
 a) determining a nucleotide sequence of a target nucleic acid;
 b) synthesizing a compound that comprises a chelating moiety attached to an oligonucleotide that comprises a nucleotide sequence that is sufficiently complementary to at least part of the nucleotide sequence of the target nucleic acid to permit the hybridization, wherein the oligonucleotide comprises from 5 to 150 nucleobases and wherein at least 10% of the nucleobases of the oligonucleotide are a modified nucleobase selected from the group consisting of: 5-mercaptoctosine, 5-mercapto-
 tournacil, 8-mercaptoquinine, 8-mercaptoadenine, 5-hydroxyctosine, 5-hydroxynucelil, 8-hydroxyadenine and 8-hydroxyguanaine; and
 c) mixing said compound with an ion of a metal selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.

34. The method of claim 33, wherein the modified nucleo-base is a hydroxynucleobase and is selected from the group consisting of 5-hydroxyctosine, 5-hydroxynucelil, 8-hydroxyadenine and 8-hydroxyguanaine.

35. The method of claim 33 wherein the chelating moiety has a formula selected from the group consisting of:
36. The method according to claim 33, wherein the conditions comprise human physiological conditions.

37. The compound according to claim 1, wherein the chelating moiety has a formula selected from the group consisting of:

wherein R is the oligonucleotide,

R¹ and R³ are independently selected from the group consisting of hydrogen, C₁₋₈ alkane, C₂₋₈ alkene, C₂₋₈ alkyne, acylC₂₋₈ alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C₁₋₈ alkylaryl, and C₁₋₈ alkyheteroaryl; and

wherein R² is independently selected from C₁₋₈ alkyl, C₂₋₈ alkyne, C₂₋₈ alkylaryl, aryl, heteroaryl, C₁₋₈ alkylaryl, C₁₋₈ alkyheteroaryl, and acylC₁₋₈ alkane.
55

-continued

56

-continued

wherein R is the oligonucleotide,

R\(^1\) and R\(^3\) are independently selected from the group consisting of hydrogen, C\(_{1-8}\) alkane, C\(_{2-8}\) alkene, C\(_{2-8}\) alkyne, acylC\(_{1-8}\) alkane, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, C\(_{1-8}\) alkylaryl, and C\(_{1-8}\) alkylheteroaryl; and

wherein R\(^2\) is independently selected from C\(_{1-8}\) alkyl, C\(_{2-8}\) alkene, C\(_{2-8}\) alkyne, aryl, heteroaryl, C\(_{1-8}\) alkylaryl, C\(_{1-8}\) alkylheteroaryl, and acylC\(_{1-8}\) alkane.

* * * * *